EQUATIONS OF THE LINEAR THEORY OF ELASTICITY

N. I. Ostrosablin UDC 539.3

The present study introduces eigenvalues and eigenvectors for the coefficient matrices
of the equations of motion, in displacements, of the linear theory of elasticity. The
eigenvalues and eigenvectors are found for materials having a crystalline structure and are
represented through independent parameters which ensure that the specific strain energy
will be positive-definite. The materials for which the equations for each displacement are
independent are indicated later in the text. The equations of motion are divided into 32
classes, depending on the number of different eigenvalues and their multiplicity.

In orthogonal Cartesian coordinates X;, x,, X3, the equations of the theory of elasti-
city have the form

[—i— (Airi; + Az} O — Pﬁija..}uj + F; =0, (1)

where u; is the displacement vector; F; is the vector of the body forces; Aikﬂj is the
tensor of the elastic moduli; p is the constant density of the material; aij is the

Kronecker symbol; 9y denotes differentiation with respect to the coordinate xi; 8. denotes
differentiation with respect to time; repeating alphabetical subscripts denote summation
from 1 to 3. The constants Aiklj have properties of symmetry [1]:

Ay = Apiyy = Agjine (2)

Taki 1 i ici * = = (A .
aking (2) into account, we find that the coefficients Aiij Ai(kz)j 1/2 (Alkzj +

Aiﬁkj) in (1) have the same symmetry properties as the elastic moduli:
Afjpy = Ay = Agije (3)

In a manner analogous to the characteristic elastic moduli and eigenstates [2-8] for the
tensor Ajkgj, we can introduce eigenvalues and characteristic tensors for coefficients (3):

A;'kjkl = fijpqlipgrsfates  ((PQ) = (78)), (4)
.- A
fispafijrs = Opgrs = 5 (8prBqs + 8ps4r)-
Equations (4) appear as follows in the double-index matrix notation in [6-8]:
Lo = foipelir (b =), » (5)

fipfir = 61)1‘-

Here, summation is performed over repeating indices from 1 to 6. It is obvious that
Hi1 = H1s Map = Uy, ..., Hg, with fip representing eigenvalues and eigenvectors of the

symmetric matrix A?k.
The matrices A?k and Aj; have a one-to-one correspondence which can be expressed through
the formulas
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Thus, elastic materials can be specified by means of Eq. (7) if we know A?k. However, here
it is necessary to ensure satisfaction of conditions of positive-definiteness [9] for Ajj.

In [9], A;: was represented through the independent parameters d;i and cip in the form

ij
Aij = dlcilcfl ‘“}‘ d26i20j2 -i— d36‘i3c]-3 + d4(,‘i4€j4 + {8)
+ dseiscis + deCieCier Cip = 0(p>i), e = ... =cg = 1.

For matrix Ai]" of (8) to be positive-definite, it is necessary and sufficient that the conditions
d; »0, i =1, ..., 6 be satisfied [9]. The parameters Cip (i > p) can take any real values.

In general form, the matrix A"i is not positive-definite. For materials satisfying the Cauchy

k
relations [10] Aj[re]j = 1/2-(Ajpg5 — AiSij) =0, matrices (6) and (7) coincide.

Characteristic elastic moduli Xj; > 0 were presented in [7] along with eigenstates tip
for materials with crystallographic syngony. Using the formulas from [7] and considering
Egs. (8), we find the eigenvalues pj and eigenvectors fip of matrix (6) for such materials.

Isotropic material

1 : '
uy =24y — Ay =0, (2 —¢yy), —g <<l Hp=pg=... =p;=

1 1
=5 {4y + Ayy) = 5 d; (1 + cy);
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The graphs of fi; = pj/d, are shown in Fig. 1. It is evident that 1 < fi; < 2.5 and 0.25 <
< 1.

Cubic syngony

W=Ay +Ay=d,(1 +dydy)), py=p,= Ay —5Au=14d, (1_%d4/d1)’
By = Hs"l‘s—“‘Au"'Azl—d ( d,/d, +621) ';’<"21<1'
The eigenvectors fj, are given by matrix (9). The graphs of ﬂi are shown in Fig. 2. It
is evident that {i, and 1, can take negative and zero values. The graph of j, passes parallel

to the dashed lines at any point within the band, depending on the values of c,;. If u, =0,

then for each displacement uj Egs. (1) become independent of one another:

- . .
[Auau + 5 Ay (g + 0g5) — Pa..} u, + F,=0,

' .

[';’ A0y + Apfe + 3 Ay 05y — p0__] Uy + Fy =0,
1

[3 A (8y; + O) + A;3055— 00, ] uy+ F;=0.

The matrix Aij of Hooke's law for this case has the form

- g —
—1g d sym
24 1 y
—1ag —14, 4
A= 2™ 2% M , 0<d, <d,.
0 0 0 4,
0 0 0 0 4
0 0 0 0 04
These are materials with a negative Poisson's ratio: =1 < v = —Aj}/A7}=-d,/(2d4; — d,) <0.

Here, A£§ are elements of the inverse matrix. An example of a material with cubic syngony
and a negative Poisson's ratio is pyrite [10, p. 175].

Hexagonal syngony (transverse isotropy)

Pre =% [ (84, — Ay) + Ap = V (BAy— 4y) — 33 + 245 ] =

=%d1[‘;‘(3—621) 1+3c1 + 1/( 206 C”‘)-m— d1)2+2( 1)'2];
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1 1
P3=Ps=’2‘;(A11+A21)=5d1(1 +ey), — 1<y <,
i 1 <10)
Py =Yg = “2“A44 + 4y =4, 1 dyd; + 531)§
1 —1 . 1 "'
Vs cOS & V3 sina % 000
1 o —1
WCOS@ —_72_—5111@ —T/—i- 000
fip= sina  cosa 0 000§ (11)
0 0 0 100
0 0 0 010
B "0 0 0 00 1_
tg 20 = V24, _ Vidye,
1(3A —AN—4 14 26‘21 d,;' (12>
2 (P4 —4y) — 4, -2—(3-—021)* TFe _.Z
Tt follows from (10) that u; > 0, so that
. C2ed a4, (13)
w2050 a—e(E )5 (2,

262 d, d 2
<0, if (3—c (-—3.1— —3—) (—4 .
Re | ( 21) 1_{_-021 ‘+ 2, < 4
The graphs of 1y and i, are shown in Figs. 3 and 4. It is evident that 0 < T3 < 1. The
graph of 1, passes parallel to and above the dashed line at an arbitrary distance which
depends on the values of the parameter (1/2)d,/d,;. If u, = 0, then we can use (1) to obtain
a separate equation for the displacement u;: , _
1 1 ’
[Auau + 5 (A — 45) 05 + ';—444633 - 95.-] Uy + 5 (g +4yy) 0354, + Fy =0,
1 1 ) 1
'5‘(‘411 + A21) Opytty + [‘2" (Au - A21) 011 + Anazz +§' A44633 - Pa..}uz +F2 =0,
1 o .
[f Ay (033 + Oap) + Aysf33 — pé‘"] Uy + Fy = 0

In this case, the matrix Aij has the form

- g -
diCay dy sym
1 1 dy
—=d, — =d, z————— +d
A’ij = 2 -2 2d1 (1 + 621) 3
0 0 0 d,
0 0 0 , 0 d,
_ 0 0 0 0 0 41+~ (:21)_

The Poisson's ratios for such a material are:

A3 - dddie, (1+cy)—dy (1~ 1)

— <<y =V = —
-1 B 1
a5 4dyd, (14 cy) + di (t—cyy)
Vo= Ve = A —2d,d, (1—c},) <0
2 T —1 ’
At dddi (14 o)+ di(i == Cyy)
. A—l —d
Vig = V3 = 2 L _<0.

A3—31 _2d1(1+021) -
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Trigonal syngony

11 PR "4 T oqe |
Bsi= 5 [‘2‘ (A +As + Ag) + 4y £ '/-(— (An +A21—444)—'A31) + 8A21J =

22 d' ..
1af3 ot 250 e

1 2¢% d z
=)/ 31+ ‘1——"?)“) 5]
Hs = H41 Mg = Ma’ 1<é21<1

V_ cosa _V_ sin o 1/5 cos P V_ smﬁ 0 0
V_ cos o V_ sin'e _1—/_ cos B V— ——sinf 0 0

fip= sin o cosa 0 0 0 0 |
0 0 sin § cos P 0 0
0 0 0 0 cosp sinfP
_ 0 0 0- 0 —sinf cosp
2V24,4 272
tg2 = 7 1% _ V 2"41 .
< (A3 + 4y — 44) — Ay 11y e 2y 4y .
2\ nT l—c,  d ) "m

The eigenvalues u; and y, and angle o are given by Egqs. (10) and (12). We also have the
inequalities (13) u; > 0, us > 0 with u, > 0, if d,/2d; + cg; > c2:(4/(1 + c,1) — /(e —c,q)),

Mo < 0, if d,/2d; + cay < 2, (4/(L + c,py) = 1/(1 = c,,)).

Tetragonal syngony

=§[A11+ A66+A33+]/A11+ Ass—Aas)'{‘zA]

1,2
+ d i d 2c2 d. \? a2, \*
26y e 8 _“a T3 it 38 I A
[ 1-'_021 +d1 i‘/(1+2d1 1_}—621 ‘dl) _I_z(dl) ], (14)

U3 —Au"‘—As—d (1——d/d1),

Mty = U5 = A44 + 4y =4d; ( dyd, + 031)

Ug =—A66+A21_d( dg/d, +"21) —1<ey <.,

The eigenvectors fip are given by matrix (11). Here

g 20 — V24, _ V2dyd, ‘
N 1 . d 2c2 d
4,5 4 —4

] 31 3
B 43 T ., ~d

The graph of p, is shown in Fig. 4, while the graphs of [j, {iy are shown in Fig. 5. It is

evident that }i5, H,, He can take negative and zero values. The graph of iy passes parallel
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to the dashed lines at any point within the band, depending on the values of the parameter

cy1. It follows from (14) that p; > 0 and u, > 0 if (1 + dg/2d;)(2¢%3,/(1 +¢c,,) +d,/d;)
1/2(d,/d,)?, while p, < 0 if (1 + dg/2d;)(2c2,/(1 +c,,) +d5/dy) < 1/2(d,/d,)2.

and pg = 0, then for each displacement u; Egqs. (1) become independent of one another:

1 i
(Auau + 3 Agg0y0 + '§‘A44033 - Pa..)ul + F; =0,
1 1
('2‘ Age011 + A130y, + 3 AyyO35— Pa..) Uy + Fy =0,
1
[_2_ A3 (Oyy + o) + Ag33; — Pa..] ug + F3=0.

The matrix Ajj of Hooke's law has the following form in this case

- 4 -
—5ds 4 sym
1 1 a3
Aj=| —7d —jd4m+d3 s 0<<dg<<2d,.
0 0 0. 4,
0 0 0 0 d,
0.0 0 0 0 dy |

-1 L2
| < vy = vy = — Ayt 2ddy (24, — dg) - ) (24, + 4 ’
—1 2
Au 4dlds (2d1 - ds) +dy (2d1 + de)
-1 2 2
V3 == Vg = —A—31 =— d4(4d1*d6)
: -1 2 ?
A11 4d1d3 (Zd1 — de) + d4 (2d1 -+ da)
A7 —d
Vig = Vg = — 2 = ——E_ < 0.

Aaal 2cl1 —dg

Rhombic syngony (orthotropic)

1 1
=5 Ay + Ay =d, (‘2‘ dy/dy + ¢y + ca2d2/d1),

1 1 1 1
by=-3 Ay + Ay = d, ('2" dy/d; + ¢y ), Me= 5 Ag + 4y =14, ('Q‘ de/d; + 621)’

~—

_fn fiz f13,
f21 f22 f23
f31 f32 j33

fw=| 0 0 0
0 0 0
00 0

s Tipfig= 6pq-

com oo
om0 o oo
- oo OO

2
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The eigenvalues y,, M,, and yg are roots of the third-degree equation

d—p
1

3 dien+di—p sym -0
1 1

5 dy 5 dy dlcgl + dzcgz +dy—n

and depend on the parameters dj > 0, cjp. Meanwhile p; >0, [p,] <py, lusl <py [11]. The

graphs of U,, Hss He are similar to those shown in Fig. 4. If wy, =0, us = 0, yg = 0, then

for each displacement u; Egs. (1) become independent of one another:
1 o1
(Anau + '§A66622 +3 Ag5033 — Pa-.) u+ F, =0,
1 1
(—2- A0y + Afpp + 5 AgaFp— Pa..) Uy + F, =0,

1 1
(7 A0, + 5 A0y + Agglzg — pt?_,) ug + Fy=0.

In this case, we write the matrix Ajj of Hooke's law as

2
1 dg
- _5 sym
7 7. T % y
2 2
1 1 dy ay dsde d
di=| —3% —z4h 4d, ST (1+2d1d4 T
0 0_ 0 d,
0 0 0 0 d,
0 0 0 0 0 dg_
The Poisson's coefficients for such a material have the form:
A7 d ( d.d ) AL d—dv, .
23 1 5% 13 s %623
Wgg = — o = — 2 | 1+ - | <0, V= — = = — 2= <0,
23 A;; 2d, 2d,d, A331 2d,
471 dwv
Vg = — =2 = —2L B 0,
Agy d3 —+ dzv23
- 2
Ly _ ddidyv 0
VoS T T T 4 4 4.8+ Adld <9
11 1Ggdy - dydg + 4dyd,vig
oo = — ARt dydy+2d,dv, v,
12 — —_1 2 L)
Azt 2d, (d,+ dv%)
45" 4‘13 (d:; + dzvga) Viz
Vo = =

T T 2 2 5 2
A 4ddydy - dydg o+ 4dyd,vig

Although there are relatively few materials known to have negative Poisson's ratios,
the above examples of such materials — for which the equations for each displacement uj are
independent of one another — can serve as a basis for the development of composite materials
with similar properties. In accordance with the classification in [12], materials with nega-

tive Poisson's ratios are naturally hard substances — as opposed to materials which are more
like fluids and have positive Poisson's ratios.
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The eigenvalues u;, Mz, Uz, and u, are roots of the fourth-degree equation

A, —u
%AW Ay —u sym
LA, FAL Ay—p — 0.
0 A Asg % Ay + Az — 1
Ay, =d,, Ay = dic, + dy. Agy = dicdy + dochy + dy.

2 2 2 ,
Ay = dicyy + dyfss + dycys + dy, Ay = d165,05) + oty
Ags = ds. Agg = dg, Ayy = dieyyoy - dofyy.

Ay = di0yiCy — dofygtss + doCay

and depend on arbitrary parameters di > 0, Cip- In this case, there are the inequalities

. s 4 dg d; [ 2

O e < o5, i 24, + Cqy + 0y =0, ‘271' + ¢4 Z}T + € 272"41
. d, ) dg 1 9
PR TP 8 4 a7 Temllsg T en é?"u;
1 1 /

d, +d d \{d 1,

po S Hy 0. if 52416 +03|+C21<”~(# +031) (2—8*“'21)2?651
1 1

If necessary, the unwritten eigenvalues p; for materials with rhombic and monoclinic
syngony can be expressed through Aj; in accordance with formulas for the roots of third- and
fourth-degree polynomials [13]. The eigenvectors fip are then found.

K has the general form of (5-6). To

avoid having to solve a sixth-degree characteristic equation for the matrix (6), we can assign
K and fip arbitrarily in Egs. (5). However, in this case it is necessary to ensure satis-

Triclinic Syngony. In this case, the matrix A?

faction of the conditions of positive-definiteness [9] for Aij'
Taking (4-5) into account, we write Eqs. (1) in the form
~ - ~ ~ ~ (15)
(fimOn -+ DBofifaOna + PafijaaOyn + a2fijasdas + BsfijnOn +
+ Balfijde — 08;;0 Yu; + Fi = 0.
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where 3,4 = 0gp = fkgrsdkg are differential operators which are invariant under an orthogonal

coordinate transformation, since they are the convolution of two symmetric second-rank tensors.
Due to the orthogonality of the characteristic tensors, we also have dyp = fiorgdrs-

In Eqs. (15), the parameters u;, ..., Hg are invariant as eigenvalues of the symmetric
matrix A?k. Numbering p; in decreasing order (p; > uy > ... > Hg), we can classify Eqs. (15)
(anisotropic materials) in relation to the number of different eigenvalues pg and their multi-

plicity. A similar classification of anisotropic materials in relation to the number of
different characteristic moduli Ay of matrix A1J and their multiplicities was presented in
[6, 8].

We place each Eq. (15) into correspondence with the symbols {a;, a5, ..., ag}*® , where
k<6, a >1, a; +a, + ... + ax = 6. Here, k is the number of different characteristic
parameters yj; @i is their multiplicity. Equations (15) break down into 32 classes [6, 8],

each class corresponding to a certain symbol {a;, a;, ..., op}*:

1) {6}

2)ﬂ,5FyQ»4F {3, 3y, {4 23, 5 1?

{14 2, 33 L 3, 2} { St &8 22,28,
2,3, 13, (3, 1, 2}, {3, 2, 1}*,

4){1113}*{1122}{1 }*{1212}*{1221}*
(1,31, 1, {2 }{21 }{ 2,1, 13+, {3, 1, 1, 1}%

5 @, 1, 1 12} (o, 1 Oy, (11,2, 1,4 {1, 2. 1, 1, 13,
@ 1, 1,1, 1)

6 {1, 1, 1, 1, 1, 1}*.

The order of the numbers within the given symbol is important. Equations of a different

class are obtained when nonidentical numbers in the symbol are rearranged. A more detailed
classification of Egs. (15) should be made in relation to the form of the characteristic
tensor fijpq- In [5, 6], the characteristic tensors f1Jpq were constructed in general form in
terms of 15 arbitrary parameters.

Not all 32 classes of equations are possible for physically existing materials; only
those for which positive-definiteness of matrix (7) is assured are possible [9}. 1In parti-
cular, class {6}* is impossible. A separate study of the above-found classes of equations
should be made within the framework of the mathematical theory of elasticity.
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